11 (Papers + Talks) Highlights from IEEE VIS’16

vis-webbanner2016

Hey, it took me a while to create this list! But better later than never. Here is my personal list of 11 highlight from the IEEE VIS’16 Conference.

If you did not have a chance to attend the conference you can start from here and then look into the following links:

Papers

Surprise! Bayesian Weighting for De-Biasing Thematic Maps.
Michael Correll, Jeffrey Heer.
https://github.com/uwdata/bayesian-surprise

Did you ever stumble into one of those choropleth maps in which the distribution of a given quantity is shown, (say, number of cars from a given manufacturer) but the only signal you can see is actually population density? This is the kind of problem Surprise! addresses. It deals with situations in which the quantity one wants to depict is confounded by another variable. To solve this problem Surprise! uses an underlying Bayesian model of how the quantity should be distributed and visualizes deviations from the model rather than quantity (hence the name Surprise!).

I think this is a brilliant idea which addresses a super common problem. I have seen people stumble into this problem countless times and I am glad we finally have a paper that explains the phenomenon and proposes a solution. The only issue is that visualizing surprise is not as natural as visualizing the actually quantity; which is normally what people would expect. One open challenge then is how to communicate both values at the same time.

Vega-Lite: A Grammar of Interactive Graphics.
Arvind Satyanarayan, Dominik Moritz, Kanit “Ham” Wongsuphasawat, Jeffrey Heer.
https://github.com/vega/vega-lite

The IDL team has done over the years and astounding job at developing an ecosystem of frameworks and tools to make the development of advanced visualizations easier and faster. Vega-Lite builds on top of Vega, which they presented last year, and proposes a much simpler language and extremely powerful functions to generate interactive graphics (with linked views, selections, filters, etc.). Arvind and Dominik gave a live demo and I have to say I am really impressed. While most existing frameworks focus on the representation part of visualization, this one focuses on interaction and as such it covers a really big gap. I am curious to see what people will manage to build using Vega-Lite. If you built some interactive visualizations in the past you certainly know that the interaction part is by far the hardest and messiest one. Vega-Lite seems to make it much simpler and straightforward than it used to be. I am looking forward to trying it out!

PROACT: Iterative Design of a Patient-Centered Visualization for Effective Prostate Cancer Health Risk Communication.
Anzu Hakone, Lane Harrison, Alvitta Ottley, Nathan Winters, Caitlin Guthiel, Paul KJ Han, Remco Chang.
http://web.cs.wpi.edu/~ltharrison/files/hakone2016proact.pdf

PROACT is a simple visualization dashboard that helps patients with prostate cancer understand their disease and make informed decisions about choosing between a conservative solution or surgery. The paper does a great job at describing the context and the challenges associated with such a delicate kind of situation and how visualization systems can be used by doctors and patients to enhance communication.

I consider this paper super relevant. While if you look into the images you won’t be impressed by fancy colorful views and interactions, the system has been demonstrated to be really effective in a very important and critical setting. It also raises awareness about issues we rarely discuss in visualization; especially how to deal with emotions and how to design systems that inform while being careful with the impact such knowledge may have on the viewers.

TextTile: An Interactive Visualization Tool for Seamless Exploratory Analysis of Structured Data and Unstructured Text.
Cristian Felix, Anshul Pandey, Enrico Bertini.
http://texttile.io

This is the latest product coming out of my lab. I plan to write a separate blog post on it later on. TextTile stems from multiple interactions we had with journalists and data analysts who need to look into data sets containing textual data together with tabular data (e.g., product reviews and surveys). In TextTile we propose a model that describes systematically how one can interactively query data starting from text and reflecting the results on the data table and vice-versa. The tool realizes this model in an interactive visual user interface with a mechanism similar to what is found in Tableau: the user creates queries and plots by dragging data fields to a predefined set of operations. I suggest you to try it on your own! You can find a demo here: http://texttile.io/.

Evaluating the Impact of Binning 2D Scalar Fields.
Lace Padilla, P. Samuel Quinan, Miriah Meyer, and Sarah H. Creem-Regehr.
https://www.cs.utah.edu/~miriah/publications/binning-study.pdf

I chose to include this paper because I found its message extremely inspiring. In visualization research we often cite a principle (proposed by Jock MacKinlay) called the “expressiveness principle“. The principle  states that “a visual encoding should express all of the relationships in the data, and only the relationships in the data“. This paper shows that this principle may actually not always hold. The paper describes experiments in which performance improves when a continuous value is presented with discrete color steps rather than continuous; a solution that breaks the expressiveness principle.  This may seem a minor detail but I believe it demonstrates a much bigger idea: there is lots of conventional wisdom ready to be debunked and it is up to us to hunt for this kind of research. Every single scientific endeavor is a loop of construction and destruction of past theories and idea. This paper is a great example of the destruction part of the cycle. We need more papers like this one!

VizItCards: A Card-Based Toolkit for Infovis Design Education.
Shiqing He and Eytan Adar.
http://www.cond.org/vizitcards.pdf

What a lovely lovely project! If you have ever tried to teach visualization you know how hard it is. Students just don’t get it if you give lectures and lots of theory. Visualization needs to be learned by doing. But organizing a course on doing in a systematic way is hard. Damn hard! Shiqing and Eytan have done an amazing job at making this process systematic and easy to adopt. They developed a toolkit and a set of cards instructors can use to guide students during a series of design workshops. One aspect I like a lot, other than the cards idea, is that many exercises have been ideated starting from an existing data visualization project and “retrofitted” to their original “amorphous” status of having a bunch of data and a vague goal. This is what the students are shown at the beginning and at the end of the process they can compare their results with the results developed in the original project. You can find the toolkit here: http://vizitcards.cond.org/supp/index.html. I am planning to adopt some of it myself next time I’ll teach my course (too late for this semester).

Colorgorical: Creating discriminable and preferable color palettes for information visualization.
Connor C. Gramazio, David H. Laidlaw, Karen B. Schloss.
http://vrl.cs.brown.edu/color

Creating categorical color palettes is a hard task and if you want to do it manually it’s even harder. Colorgorical is a new color selection tool that enables you to build new categorical color palettes using a lot of useful and interesting parameters, including: perceptual difference, name difference, pair preference, and name uniqueness. An internal algorithm tries to optimize all the desired parameters and generates a new color palette for you. You can also add starting colors to make sure some colors you want to have are actually present in the final color palette. I strongly suggest you to play with it! They have a nice web site explaining all the parameters and a simple interface to generate new palettes.

Talks

An Empire Built On Sand: Reexamining What We Think We Know About Visualization.
Robert Kosara.
https://eagereyes.org/papers/an-empire-built-on-sand

Robert’s talk was more of a performance than a talk. I really really enjoyed it. His talk at BELIV was all focused on the idea that we in vis regard some ideas as truth and keep repeating them even if evidence for them is actually weak or nonexistent. Robert kept repeating, in a wonderfully coordinated sequence, “how do we know that?” … “how do we know that?” … “how do we know that?“. I loved it. Too bad the talk was not recorded. But you can find the accompanying paper here. Kudos to Robert for assuming the role of contrarian at vis. We really need people like him who do not hold back, speak with candor, and are ready to yell the “the emperor has no clothes”.

We Should Never Stop BELIVing: Reflections on 10 Years of Workshops on the Esoteric Art of Evaluating Information Visualization.
Enrico Bertini.
http://bit.ly/beliv-keynote

Here is another one from yours truly. I started the BELIV workshop on evaluation in vis in 2006 with Giuseppe Santucci (my PhD advisor) and Catherine Plaisant and the organizers kindly asked me to give a keynote for the 10 years anniversary. If you click on the URL above you can watch the entire talk. I tried to be funny and also to give a sense of how much progress we have made and what may come next. Evaluation in visualization is a continuously evolving endeavor and there is much to learn and perfect. The vis community has been receptive to new ideas on how to conduct empirical research and I predict we will see a lot of innovation in coming years. Let me know what you think if you watch the video!

Capstone Talk: The three laws of communication.
Jean-luc Doumont.
http://www.principiae.be/

Wow! I had absolutely no idea who Jean-Luc was before I entered the room and started listening to his talk. This is by far one of the best capstone talks I have ever attended at VIS, if not the best. Jean-Luc gave a talk on how to convey messages effectively and organized it around a number of principles he developed through the years of his activity training people on effective communication. This guy know what he is talking about. His body language, the way he expresses his thoughts, the quality and density of information in what he says, the style of his slides, etc., everything is great. His work can inform any professional who needs to communicate information better, being it visual or verbal. He has a fantastic book which looks very much like Tufte’s but more on general communication. If you have never heard of him take a look at his work, he is amazing … and super fun!

Communicating Methods, Results, and Intentions in Empirical Research.
Jessica Hullman.
http://steveharoz.com/publications/vis2016-panel/improve-empirical-research.html

Jessica is doing some of the most interesting type of work in visualization. Her blend of core statistical concept and visualization is very much needed and one of the most interesting recent trend in vis: how to use vis to communicate statistics better and, at the same time, how to use statistics to do better vis research. In her short talk Jessica raised a number of important points on how we communicate research, not only to others but also to ourselves, and how we can introduce practices that may reduce the chances we are fooling ourselves. The world of experimental research and statistics is changing very fast and we are witnessing a wave of great self-criticism and reform. While this is true for science in general, the world of visualization research is also very receptive to what is happening and Jessica is one of the few vis people who is helping us make sense of it.

That’s all folks! I hope you’ll find these projects inspiring!